skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Kurt Mehlhorn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Telikepalli Kavitha; Kurt Mehlhorn (Ed.)
    Over the last 50 years, there have been many data structures proposed to perform proximity search problems on metric data. Perhaps the simplest of these is the ball tree, which was independently discovered multiple times over the years. However, there is a lack of strong theoretical guarantees for standard ball trees, often leading to more complicated structures when guarantees are required. In this paper, we present the greedy tree, a simple ball tree construction for which we can prove strong theoretical guarantees for proximity search queries, matching the state of the art under reasonable assumptions. To our knowledge, this is the first ball tree construction providing such guarantees. Like a standard ball tree, it is a binary tree with the points stored in the leaves. Only a point, a radius, and an integer are stored for each node. The asymptotic running times of search algorithms in the greedy tree match those of more complicated structures regularly used in practice. 
    more » « less
  2. Telikepalli Kavitha and Kurt Mehlhorn (Ed.)
    We present a very simple and intuitive algorithm to find balanced sparse cuts in a graph via shortest-paths. Our algorithm combines a new multiplicative-weights framework for solving unit-weight multi-commodity flows with standard ball growing arguments. Using Dijkstra's algorithm for computing the shortest paths afresh every time gives a very simple algorithm that runs in time Õ(m^2/ø) and finds an Õ(ø)-sparse balanced cut, when the given graph has a ø-sparse balanced cut. Combining our algorithm with known deterministic data-structures for answering approximate All Pairs Shortest Paths (APSP) queries under increasing edge weights (decremental setting), we obtain a simple deterministic algorithm that finds m^{o(1)}ø-sparse balanced cuts in m^{1+o(1)}/ø time. Our deterministic almost-linear time algorithm matches the state-of-the-art in randomized and deterministic settings up to subpolynomial factors, while being significantly simpler to understand and analyze, especially compared to the only almost-linear time deterministic algorithm, a recent breakthrough by Chuzhoy-Gao-Li-Nanongkai- Peng-Saranurak (FOCS 2020). 
    more » « less